Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 16

Determinants of order *n*

- 1. Label the following statements as true or false.
 - (a) The function det : $M_{n \times n}(F) \to F$ is a linear transformation.
 - (b) The determinant of a square matrix can be evaluated by cofactor expansion along any row.
 - (c) If two rows of a square matrix A are identical, then det(A) = 0.
 - (d) If *B* is a matrix obtained from a square matrix *A* by interchanging any two rows, then det(B) = -det(A).
 - (e) If *B* is a matrix obtained from a square matrix *A* by multiplying a row of *A* by a scalar, then det(B) = det(A).
 - (f) If *B* is a matrix obtained from a square matrix *A* by adding *k* times row *i* to row *j*, then det(B) = k det(A).
 - (g) If $A \in M_{n \times n}(F)$ has rank *n*, then det(A) = 0.
 - (h) The determinant of an upper triangular matrix equals the product of its diagonal entries.
- 2. Find the value of *k* that satisfies the following equation:

$$\det \begin{pmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

3. Find the value of *k* that satisfies the following equation:

$$\det \begin{pmatrix} 2a_1 & 2a_2 & 2a_3 \\ 3b_1 + 5c_1 & 3b_2 + 5c_2 & 3b_3 + 5c_3 \\ 7c_1 & 7c_2 & 7c_3 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

4. Find the value of *k* that satisfies the following equation:

$$\det \begin{pmatrix} b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ a_1 + c_1 & a_2 + c_2 & a_3 + c_3 \\ a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

In Exercises 5-12, evaluate the determinant of the given matrix by cofactor expansion along the indicated row.

5.
$$\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$$

along the first row6. $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0 \end{pmatrix}$
along the first row7. $\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$
along the second row8. $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0 \end{pmatrix}$
along the second row9. $\begin{pmatrix} 0 & 1+i & 2 \\ -2i & 0 & 1-i \\ 3 & 4i & 0 \end{pmatrix}$
along the third row10. $\begin{pmatrix} i & 2+i & 0 \\ -1 & 3 & 2i \\ 0 & -1 & 1-i \end{pmatrix}$
along the second row11. $\begin{pmatrix} 0 & 2 & 1 & 3 \\ 1 & 0 & -2 & 2 \\ 3 & -1 & 0 & 1 \\ -1 & 1 & 2 & 0 \end{pmatrix}$
along the fourth row12. $\begin{pmatrix} 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1 \\ 10 & 0 & 0 & 1 \end{pmatrix}$

In Exercises 13-22, evaluate the determinant of the given matrix by any legitimate method.

$$13. \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$14. \begin{pmatrix} 2 & 3 & 4 \\ 5 & 6 & 0 \\ 7 & 0 & 0 \end{pmatrix}$$

$$15. \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$16. \begin{pmatrix} -1 & 3 & 2 \\ 4 & -8 & 1 \\ 2 & 2 & 5 \end{pmatrix}$$

$$17. \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -5 \\ 6 & -4 & 3 \end{pmatrix}$$

$$18. \begin{pmatrix} 1 & -2 & 3 \\ -1 & 2 & -5 \\ 3 & -1 & 2 \end{pmatrix}$$

$$19. \begin{pmatrix} i & 2 & -1 \\ 3 & 1+i & 2 \\ -2i & 1 & 4-i \end{pmatrix}$$

$$20. \begin{pmatrix} -1 & 2+i & 3 \\ 1-i & i & 1 \\ 3i & 2 & -1+i \end{pmatrix}$$

$$21. \begin{pmatrix} 1 & 0 & -2 & 3 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix} 22. \begin{pmatrix} 1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15 \end{pmatrix}$$

- 23. Prove that the determinant of an upper triangular matrix is the product of its diagonal entries.
- 24. Prove that if *E* is an elementary matrix, then $det(E^t) = det(E)$.
- 25. Prove that $det(kA) = k^n det(A)$ for any $A \in M_{n \times n}(F)$.
- 26. Let $A \in M_{n \times n}(F)$. Under what conditions is det(-A) = det(A)?
- 27. Prove that if $A \in M_{n \times n}(F)$ has two identical columns, then det(A) = 0.
- 28. Compute $det(E_i)$ if E_i is an elementary matrix of type *i*.
- 29. Let the rows of $A \in M_{n \times n}(F)$ be a_1, a_2, \ldots, a_n , and let *B* be the matrix in which the rows are $a_n, a_{n-1}, \ldots, a_1$. Calculate det(*B*) in terms of det(*A*).
