Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)

Problem Sheet - 16
Determinants of order n

1. Label the following statements as true or false.
(a) The function det : $M_{n \times n}(F) \rightarrow F$ is a linear transformation.
(b) The determinant of a square matrix can be evaluated by cofactor expansion along any row.
(c) If two rows of a square matrix A are identical, then $\operatorname{det}(A)=0$.
(d) If B is a matrix obtained from a square matrix A by interchanging any two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(e) If B is a matrix obtained from a square matrix A by multiplying a row of A by a scalar, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(f) If B is a matrix obtained from a square matrix A by adding k times row i to row j, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
(g) If $A \in M_{n \times n}(F)$ has rank n, then $\operatorname{det}(A)=0$.
(h) The determinant of an upper triangular matrix equals the product of its diagonal entries.
2. Find the value of k that satisfies the following equation:

$$
\operatorname{det}\left(\begin{array}{ccc}
3 a_{1} & 3 a_{2} & 3 a_{3} \\
3 b_{1} & 3 b_{2} & 3 b_{3} \\
3 c_{1} & 3 c_{2} & 3 c_{3}
\end{array}\right)=k \operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

3. Find the value of k that satisfies the following equation:

$$
\operatorname{det}\left(\begin{array}{ccc}
2 a_{1} & 2 a_{2} & 2 a_{3} \\
3 b_{1}+5 c_{1} & 3 b_{2}+5 c_{2} & 3 b_{3}+5 c_{3} \\
7 c_{1} & 7 c_{2} & 7 c_{3}
\end{array}\right)=k \operatorname{det}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

4. Find the value of k that satisfies the following equation:

$$
\operatorname{det}\left(\begin{array}{lll}
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\
a_{1}+c_{1} & a_{2}+c_{2} & a_{3}+c_{3} \\
a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3}
\end{array}\right)=k \operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

In Exercises 5-12, evaluate the determinant of the given matrix by cofactor expansion along the indicated row.
5. $\left(\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$
along the first row
7. $\left(\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$
along the second row
9. $\left(\begin{array}{ccc}0 & 1+i & 2 \\ -2 i & 0 & 1-i \\ 3 & 4 i & 0\end{array}\right)$ along the third row
11. $\left(\begin{array}{rrrr}0 & 2 & 1 & 3 \\ 1 & 0 & -2 & 2 \\ 3 & -1 & 0 & 1 \\ -1 & 1 & 2 & 0\end{array}\right)$
along the fourth row
6. $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0\end{array}\right)$
along the first row
8. $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0\end{array}\right)$
along the third row
10. $\left(\begin{array}{ccc}i & 2+i & 0 \\ -1 & 3 & 2 i \\ 0 & -1 & 1-i\end{array}\right)$ along the second row
12. $\left(\begin{array}{rrrr}1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1\end{array}\right)$
along the fourth row along the fourth row

In Exercises 13-22, evaluate the determinant of the given matrix by any legitimate method.
13. $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$
14. $\left(\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 0 \\ 7 & 0 & 0\end{array}\right)$
15. $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
16. $\left(\begin{array}{rrr}-1 & 3 & 2 \\ 4 & -8 & 1 \\ 2 & 2 & 5\end{array}\right)$
17. $\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 2 & -5 \\ 6 & -4 & 3\end{array}\right)$
18. $\left(\begin{array}{ccc}1 & -2 & 3 \\ -1 & 2 & -5 \\ 3 & -1 & 2\end{array}\right)$
19. $\left(\begin{array}{ccc}i & 2 & -1 \\ 3 & 1+i & 2 \\ -2 i & 1 & 4-i\end{array}\right)$
20. $\left(\begin{array}{ccc}-1 & 2+i & 3 \\ 1-i & i & 1 \\ 3 i & 2 & -1+i\end{array}\right)$
21. $\left(\begin{array}{rrrr}1 & 0 & -2 & 3 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1\end{array}\right)$
22. $\left(\begin{array}{rrrr}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15\end{array}\right)$
23. Prove that the determinant of an upper triangular matrix is the product of its diagonal entries.
24. Prove that if E is an elementary matrix, then $\operatorname{det}\left(E^{t}\right)=\operatorname{det}(E)$.
25. Prove that $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$ for any $A \in M_{n \times n}(F)$.
26. Let $A \in M_{n \times n}(F)$. Under what conditions is $\operatorname{det}(-A)=\operatorname{det}(A)$?
27. Prove that if $A \in M_{n \times n}(F)$ has two identical columns, then $\operatorname{det}(A)=0$.
28. Compute $\operatorname{det}\left(E_{i}\right)$ if E_{i} is an elementary matrix of type i.
29. Let the rows of $A \in M_{n \times n}(F)$ be $a_{1}, a_{2}, \ldots, a_{n}$, and let B be the matrix in which the rows are $a_{n}, a_{n-1}, \ldots, a_{1}$. Calculate $\operatorname{det}(B)$ in terms of $\operatorname{det}(A)$.

